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ABSTRACT

To describe the propagation of three nonlinear pulses in some disper-
sive material one have to solve simultaneously a set of coupled NLS
equations. Using a multiple scales method the interaction between
two bright and one dark solitons is studied and an Yajima-Oikawa
completely integrable system is obtained. The one-soliton solutions
of the corresponding Yajima-Oikawa system are determined using a
Madelung fluid description.
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Basic equations

Extending the work of Kivshar [1] for a bright-dark soliton interaction, one
considers a multimode optical fiber with three nonlinear dispersive waves in
interaction. Suppose that the dispersion relations of these weakly nonlinear

waves are w; = w;(k; : |A1]?,|A2)?, |A3)%), i=1,2,3
Let e/(kor=wot)  he a carrier wave.
A Taylor expansion around (ko,wp) and |A;| = 0 of each w; gives

8%- 1 62w,~ (9(,«)1‘
wimen= (G ) =i+ (G ), oo + (5 )l
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T A2+<’> Asl? + ... 1
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Replacing w; —wg >~ —i%, ki — ko ~ i(%, after a translation of coordinate

(x — x— (g—ﬁ) . t), we obtain a nonlinear system of three interacting waves

0A . 0A a; 0%A

i atl + zvla—; + 5 w; + oz A2 Ay + a3l Ao P Ay + agl AP A =0
0A . 0A 0%A

i (%2 + 1%87372 + %W; + Bo| A1|? Az + B5|A2|2 Ag + B4] As|? A3 = 0
0A 0%A

e Ty e + AP As £ 90l AalP Ay + Ay g =, (2)

where V; = (%) — (g—ﬁ) , ¢ =1,2 and the constants a1, 51,7 are
i/0 0

related to derivatives of w; with respect to k; (o = — <8;;"21> ,...) and
1/0
s, ...74 to the derivatives with respect to |A;|? <a2 = (%) ,)

Further on we consider channel 3 normal- and 1 and 2 with anomalous
dispersion [1], [2]. Writing

Ay =Wt Ay = Wae® | Az = (ug + a(z, t))eTTOED)

8&)' 8&)3
5= — (2 ) 2, r:-()
(8|A3‘2>0 0 3\A3|2 0 0

(uo, @ real) the system (2) transforms into

oV oV O*w
i 8t1 + i‘/iaixl + %8721 + (02| W1 + ag|Wo|?) ¥y + 204u0a¥y = 0
RoAS 0V 0*v
za—; + 11/287; + % 69:22 + (B2l W1 |* + B3 W2]?) Wy + 204upaWy = 0 (3)
0%a 0 0%a A2 9% vy 02

d"a da oa m 0" 2 . |2
52 T M2U0G s 5 Ty g2 (20l Yl + ulPa[%)
+ nonlinear terms in (a,¢) =0

The linear part of the a equation corresponds to an acoustic field with
dispersion relation (y; <0, 74 > 0)

’Y% ’Y% 2

and phase velocity ¢ = w/k, where ¢? = |y|y4ug.

We shall perform a multiple scales analysis of the system (3). We introduce
new functions and scaled variables by

3 3
t=et, x=>e(lr—ct), a=eca, ¢=ep, V3=e1Vy, Wy= ec1ly,



WAVE SOLUTIONS OF ZAKHAROV-YAJIMA-OIKAWA SYSTEM 315

In order g in € from a equation we obtain

50 7 0 2 2

— 4+ == v v =0. 4

5%t 5o (v2u0 1 |* + Y3uo T2 l?) (4)
All the nonlinear terms in a equation contribute to higher order in e. In
order % from W; equations we obtain Vi = Vo = ¢, which represents a long
wave-short wave resonance condition [3].

In the next order (%) in € from the ¥ equations we get

,8\111 (65} 8 \111
ZW—I- 5 9.2 + 2a4upa¥; =0
8\1’2 061 0%,
at + — 5 02 + 2B4upa¥e = 0 (5)

The equations (4), (5) represent an 1D 2 component Zakharov [4], Yajima-
Oikawa [5] system. A similar problem in 2-D was considered in [6].

Madelung’s Approach

The special case of coefficients (o; = 3;, 72 = 73) is integrable [6] and will
be considered in what follows. In this case, simplifying the notations we
have to study the system

Oa

8t+78 (1012 + |T2?) =0

.8‘1’ 1 0%y, )

v +§8 +ﬁ\I/a—0 i=1,2. (6)

Following Madelung [7] we consider

U = /i e
Then from the first equation (6) we have

Oa

0
5 5 (p1+p2)=0 (7)

and from the ¥, equations we obtain the continuity equations for the fluid
densities p;

)
P 9 (wipi) = 0, i=1,2

ot Oz
(e 1) = 208, 0
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and

ae 1182\F 1/96;\°

Derivating this last ones Wlth respect to x the following equations of motion
for the fluid velocities v; are obtained

0 9 10 (1 0*/pi da
7 T = a - 1
<6t T 8m> YT 0 <‘/pl- Ox? ) +ﬁ8x (10)

Following Fedele [8] the equations (10) can be written as

_ .8’Uz‘+ apz+2[ (1) — /avi dx] dpi

Pior T at Bz
1 0%p; 0 Op

with ¢; arbitrary integration quantltles, eventually dependent on time.

Motion with constant velocity (vi = vy = vg

From the equations of continuity one can see that both pi(z,t) and pa(x,t)
depend on £ = = — vgt. We assume that also a(x,t) depends only on &

Denoting —FE; = 2¢; — v% the equations of motion satisfied by p; write

1d%p; 5, dp; dpi  da

— 20— 0. 12
4 ded de T TPige T (12)
From the a equation it is easily seen that
i
= ulpr+p2), —=p (13)
Vo

We shall discuss firstly the situation Ey = Es. Then the equations (12)
write

1 d3pi dpz d

- —F— 2 =0 14
1483 je The 5(pl tp2) 201+ p2) e (14)
the same [12], [10] as for the Manakov system [9]. Solutions for Manakov
model were studied by many authors ([12], where many other references
can be found). In what follows we shall present some solutions of (13)
which can be obtained using Madelung approach (for more details see [11],
[10].

It is convenient to add the two equations of motion (14); denoting z4 =
pr+pa (£ — 2€) we get

d32+ dZ+ 3 d
) Dl
HbLPT:

2 _
o 2 =0 (15)
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Integrating twice one obtains

1 (dz\?
1 (;g) = —pzt + Ez3 + Azy + B = P3(24) (16)
Subtracting the two equations of motion (14) and denoting z_ = p; — pa
we find 5
1d°z_ dz_ dzy dz_
+ _p%= ST T 1
1 des T + pz Tz + 2uzy i 0 (17)
a linear differential equation in z_ (once z4 (&) is known) A special solution
is
2o = (p] = p3)zs pi+ps=1 (18)
Then
p1=pizr,  p2=pozy (19)

For constant velocities the densities p; have to satisfy additional conditions,

namely ,
11 0°/pi
2 Vpi 0x?

which for the previous solutions (19) becomes

+ pzi(§) = A, (20)

d22+ 1 dZ+ 2
— (=) + — = 0. 21
dg? 224 ( d€ ) pap = Az =0 (21)

It can be satisfied if A = % B=0.
Assume Ps(z4) has three distinct roots; then

P3(21) = —plz4 — 21) (24 — 22) (24 — 23) (22)

The restriction B = 0 means that one of the roots z5 or z3 is 0. We obtained
two acceptable periodic solutions

z1 >0, z9 = 0, z3 <0

zy =2z cn’u (23)

2 2
Uzi\/ﬁf, ]{}2:721 , g = —F—
g 21 + |23 V21 + |23
23=0, 0<20< 23

2y = 21 — (21 — 22)sn’u (24)

2 — 2
wo Ve p_nzm o
Z1 \/ %1
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In the degenerate case, when kK — 1 (cn u — sech w,  sn u — tanh u), in
both cases we get a bright soliton

1 2/i 2 (25)

Z+—>21 U = — =

cosh?u g’ 9= =

In conclusion, in this case of motion with constant velocities and equal
constants ¢; = cg = ¢g, the solutions are bright solitons. It is clear that in
this case no energy transfer between the two components takes place.

Asv; = ‘%’ = vp, .91‘(1', t) = vox + 7;(t) and using (9) the phase is easily
calculated; one obtains

E

1
0; = vox — (21)(2) — 2> t+96; (26)

Motion with stationary-profile current velocity

pi(.%',t) :p(€)7 Ui(x7t) :Ui(‘S): §=x—upt (27)
From the equations of continuity

V; = ug + é (28)

(2

As in the previous section we consider Fq = E5. We get the same equations
as in the previous section, but without any restriction on the solution. A
larger class of periodic solutions can be considered. As an example we
consider the case 0 < z2 < 21 (no restriction on zy and z3) when we get

2y =21 — (21 — 29)sn’u (29)

u:2\/ﬁg’ k2:z1—22 . 2

9_7
Z1 —237 VZ1 — 22

The degenerate case A = 1 is obtained for zo = 23 > 0, and

2y =21 — (21 — 22) tanh® u (30)

corresponding to a bright-type soliton with nonvanishing values at infinity
(shifted-bright soliton).

The expression of the phase takes a more complicated form containing
incomplete elliptic integral of third kind.

For Fy # FE5 we shall use a direct method for solving the coupled system
of equations (i = 1,2)

1d3pi dp; dp; d
et Y R i =0.
148 it Y(p1 + p2) & TP dg(p1+p2)
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We seek solutions of the form
pi = A; + Bisn®u,  u=2\{.
Details are presented in [10]. In the degenerate case (k* = 1) we get

4 2
p1= ib(,u + 28 — tanh? u)
~

4N
p2 = 7(1 — b) (1 — tanh® u),

with g > 1, 0 < b < 1, and u = 2X§. They represent shifted-bright
solitons.

Conclusions

A multiple scales analysis for three wave interaction in a multiple mode
optical fiber is performed, assuming that one mode has normal dispersion
and the other two anomalous dispersion. If a long wave-short wave interac-
tion takes place a two component Zakharov-Yajima-Oikawa system results.
This is analyzed using a Madelung fluid ansatz for the short waves. The
resulting system is solved in two cases, namely 1) equal and constant veloc-
ities, and 2) motion with stationary profile current velocities. Expressions
for the bright solitons in these cases are presented.
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