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Abstract

To describe the propagation of three nonlinear pulses in some disper-
sive material one have to solve simultaneously a set of coupled NLS
equations. Using a multiple scales method the interaction between
two bright and one dark solitons is studied and an Yajima-Oikawa
completely integrable system is obtained. The one-soliton solutions
of the corresponding Yajima-Oikawa system are determined using a
Madelung fluid description.
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Basic equations

Extending the work of Kivshar [1] for a bright-dark soliton interaction, one
considers a multimode optical fiber with three nonlinear dispersive waves in
interaction. Suppose that the dispersion relations of these weakly nonlinear
waves are ωi = ωi(ki : |A1|2, |A2|2, |A3|2), i = 1, 2, 3
Let ei(k0x−ω0t) be a carrier wave.
A Taylor expansion around (k0, ω0) and |Ai| = 0 of each ωi gives

ωi − ω0 =
(

∂ωi

∂ki

)

0

(ki − k0) +
1
2

(
∂2ωi

∂k2
i

)

0

(ki − k0)2 +
(

∂ωi

∂|A1|2
)

0

|A1|2+

(
∂ωi

∂|A2|2
)

0

|A2|2 +
(

∂ωi

∂|A3|2
)

0

|A3|2 + ... (1)
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Replacing ωi−ω0 ' −i ∂
∂t , ki−k0 ' i ∂

∂x , after a translation of coordinate

(x → x−
(

∂ω3
∂k3

)
0
t), we obtain a nonlinear system of three interacting waves

i
∂A1

∂t
+ iV1

∂A1

∂x
+

α1

2
∂2A1

∂x2
+ α2|A1|2A1 + α3|A2|2A1 + α4|A3|2A1 = 0

i
∂A2

∂t
+ iV2

∂A2

∂x
+

β1

2
∂2A2

∂x2
+ β2|A1|2A2 + β3|A2|2A2 + β4|A3|2A2 = 0

i
∂A3

∂t
+

γ1

2
∂2A3

∂x2
+ γ2|A1|2A3 + γ3|A2|2A3 + γ4|A3|2A3 = 0, (2)

where Vi =
(

∂ωi
∂ki

)
0
−

(
∂ω3
∂k3

)
0
, i = 1, 2 and the constants α1, β1, γ1 are

related to derivatives of ωi with respect to ki (α1 = −
(

∂2ω1

∂k2
1

)
0
, ...) and

α2, ...γ4 to the derivatives with respect to |Ai|2
(
α2 =

(
∂ω1

∂|A1|2
)

, ...
)
.

Further on we consider channel 3 normal- and 1 and 2 with anomalous
dispersion [1], [2]. Writing

A1 = Ψ1e
iδ1t, A2 = Ψ2e

iδ2t, A3 = (u0 + a(x, t))ei(Γt+φ(x,t))

δi = −
(

∂ωi

∂|A3|2
)

0

u2
0, Γ = −

(
∂ω3

∂|A3|2
)

0

u2
0.

(u0, a real) the system (2) transforms into

i
∂Ψ1

∂t
+ iV1

∂Ψ1

∂x
+

α1

2
∂2Ψ1

∂x2
+

(
α2|Ψ1|2 + α3|Ψ2|2

)
Ψ1 + 2α4u0aΨ1 = 0

i
∂Ψ2

∂t
+ iV2

∂Ψ2

∂x
+

β1

2
∂2Ψ2

∂x2
+

(
β2|Ψ1|2 + β3|Ψ2|2

)
Ψ2 + 2α4u0aΨ2 = 0 (3)

∂2a

∂t2
+ γ1γ2u

2
0

∂2a

∂x2
+

γ2
1

4
∂4a

∂x4
+

γ1

2
∂2

∂x2
(γ2u0|Ψ1|2 + γ3u0|Ψ2|2)

+ nonlinear terms in (a, φ) = 0
The linear part of the a equation corresponds to an acoustic field with
dispersion relation (γ1 < 0, γ4 > 0)

ω = ck

√
1 +

γ2
1

4c2
k2 ' ck

(
1 +

γ2
1

8c2
k2

)

and phase velocity c = ω/k, where c2 = |γ1|γ4u
2
0.

We shall perform a multiple scales analysis of the system (3). We introduce
new functions and scaled variables by

t ⇒ εt, x ⇒ √
ε(x− ct), a ⇒ εa, φ ⇒ εφ, Ψ1 ⇒ ε

3
4 Ψ1, Ψ2 ⇒ ε

3
4 Ψ2,
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In order 5
4 in ε from a equation we obtain

c
∂a

∂t
+

γ1

2
∂

∂x

(
γ2u0|Ψ1|2 + γ3u0|Ψ2|2

)
= 0. (4)

All the nonlinear terms in a equation contribute to higher order in ε. In
order 5

4 from Ψi equations we obtain V1 = V2 = c, which represents a long
wave-short wave resonance condition [3].

In the next order
(

7
4

)
in ε from the Ψ equations we get

i
∂Ψ1

∂t
+

α1

2
∂2Ψ1

∂x2
+ 2α4u0aΨ1 = 0

i
∂Ψ2

∂t
+

β1

2
∂2Ψ2

∂x2
+ 2β4u0aΨ2 = 0 (5)

The equations (4), (5) represent an 1D 2 component Zakharov [4], Yajima-
Oikawa [5] system. A similar problem in 2-D was considered in [6].

Madelung’s Approach

The special case of coefficients (αi = βi, γ2 = γ3) is integrable [6] and will
be considered in what follows. In this case, simplifying the notations we
have to study the system

∂a

∂t
+ γ

∂

∂x

(|Ψ1|2 + |Ψ2|2
)

= 0

i
∂Ψi

∂t
+

1
2

∂2Ψi

∂x2
+ βΨia = 0, i = 1, 2. (6)

Following Madelung [7] we consider

Ψi =
√

ρi eiθi .

Then from the first equation (6) we have

∂a

∂t
+ γ

∂

∂x
(ρ1 + ρ2) = 0 (7)

and from the Ψi equations we obtain the continuity equations for the fluid
densities ρi

∂ρi

∂t
+

∂

∂x
(viρi) = 0, i = 1, 2

vi(x, t) =
∂θi(x, t)

∂x
, (8)
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and

−∂θi

∂t
+

1
2

1√
ρi

∂2√ρi

∂x2
− 1

2

(
∂θi

∂x

)2

+ βa = 0. (9)

Derivating this last ones with respect to x the following equations of motion
for the fluid velocities vi are obtained

(
∂

∂t
+ vi

∂

∂x

)
vi =

1
2

∂

∂x

(
1√
ρi

∂2√ρi

∂x2

)
+ β

∂a

∂x
. (10)

Following Fedele [8] the equations (10) can be written as

−ρi
∂vi

∂t
+ vi

∂ρi

∂t
+ 2

[
ci(t)−

∫
∂vi

∂t
dx

]
∂ρi

∂x

+
1
4

∂3ρi

∂x3
+ ρi

∂

∂x
(aρi) + 2aρi

∂ρi

∂x
= 0 (11)

with ci arbitrary integration quantities, eventually dependent on time.

Motion with constant velocity (v1 = v2 = v0

From the equations of continuity one can see that both ρ1(x, t) and ρ2(x, t)
depend on ξ = x − v0t. We assume that also a(x, t) depends only on ξ.
Denoting −Ei = 2ci − v2

0 the equations of motion satisfied by ρi write

1
4

d3ρi

dξ3
−Ei

dρi

dξ
+ 2a

dρi

dξ
+ ρi

da

dξ
= 0. (12)

From the a equation it is easily seen that

a = µ(ρ1 + ρ2),
γ

v0
= µ. (13)

We shall discuss firstly the situation E1 = E2. Then the equations (12)
write

1
4

d3ρi

dξ3
− E

dρi

dξ
+ µρi

d

dξ
(ρ1 + ρ2) + 2µ(ρ1 + ρ2)

dρi

dξ
= 0 (14)

the same [12], [10] as for the Manakov system [9]. Solutions for Manakov
model were studied by many authors ([12], where many other references
can be found). In what follows we shall present some solutions of (13)
which can be obtained using Madelung approach (for more details see [11],
[10].
It is convenient to add the two equations of motion (14); denoting z+ =
ρ1 + ρ2 (ξ → 2ξ) we get

d3z+

dξ3
− E

dz+

dξ
+

3
2
µ

d

dξ
z2
+ = 0 (15)
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Integrating twice one obtains

1
4

(
dz+

dξ

)2

= −µz3
+ + Ez2

+ + Az+ + B = P3(z+) (16)

Subtracting the two equations of motion (14) and denoting z− = ρ1 − ρ2
we find

1
4

d3z−
dξ3

− E
dz−
dξ

+ µz−
dz+

dξ
+ 2µz+

dz−
dξ

= 0 (17)

a linear differential equation in z− (once z+(ξ) is known) A special solution
is

z− = (p2
1 − p2

2)z+ p2
1 + p2

2 = 1 (18)

Then
ρ1 = p2

1z+, ρ2 = p2
2z+ (19)

For constant velocities the densities ρi have to satisfy additional conditions,
namely

1
2

1√
ρi

∂2√ρi

∂x2
+ µz+(ξ) = λi, (20)

which for the previous solutions (19) becomes

d2z+

dξ2
− 1

2z+

(
dz+

dξ

)2

+ µz+ − λz+ = 0. (21)

It can be satisfied if λ = E
2 B = 0.

Assume P3(z+) has three distinct roots; then

P3(z+) = −µ(z+ − z1)(z+ − z2)(z+ − z3) (22)

The restriction B = 0 means that one of the roots z2 or z3 is 0. We obtained
two acceptable periodic solutions

z1 > 0, z2 = 0, z3 < 0

z+ = z1 cn2u (23)

u =
2
√

µ

g
ξ, k2 =

z1

z1 + |z3| , g =
2√

z1 + |z3|
z3 = 0, 0 < z2 < z3

z+ = z1 − (z1 − z2)sn2u (24)

u =
2
√

µ

g
ξ, k2 =

z1 − z2

z1
, g =

2√
z1
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In the degenerate case, when k → 1 (cn u → sech u, sn u → tanh u), in
both cases we get a bright soliton

z+ → z1
1

cosh2u
u =

2
√

µ

g
, g =

2√
z1

(25)

In conclusion, in this case of motion with constant velocities and equal
constants c1 = c2 = c0, the solutions are bright solitons. It is clear that in
this case no energy transfer between the two components takes place.

As vi = dθi
dx = v0, θi(x, t) = v0x + γi(t) and using (9) the phase is easily

calculated; one obtains

θi = v0x−
(

1
2
v2
0 −

E

2

)
t + δi (26)

Motion with stationary-profile current velocity

ρi(x, t) = ρ(ξ), vi(x, t) = vi(ξ), ξ = x− u0t (27)
From the equations of continuity

vi = u0 +
Ai

ρi
(28)

As in the previous section we consider E1 = E2. We get the same equations
as in the previous section, but without any restriction on the solution. A
larger class of periodic solutions can be considered. As an example we
consider the case 0 < z2 < z1 (no restriction on z2 and z3) when we get

z+ = z1 − (z1 − z2)sn2u (29)

u =
2
√

µ

g
ξ, k2 =

z1 − z2

z1 − z3
, g =

2√
z1 − z2

The degenerate case λ = 1 is obtained for z2 = z3 > 0, and

z+ = z1 − (z1 − z2) tanh2 u (30)

corresponding to a bright-type soliton with nonvanishing values at infinity
(shifted-bright soliton).
The expression of the phase takes a more complicated form containing
incomplete elliptic integral of third kind.
For E1 6= E2 we shall use a direct method for solving the coupled system
of equations (i = 1, 2)

1
4

d3ρi

dξ3
− Ei

dρi

dξ
+ 2γ(ρ1 + ρ2)

dρi

dξ
+ γρi

d

dξ
(ρ1 + ρ2) = 0.
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We seek solutions of the form

ρi = Ai + Bisn
2u, u = 2λξ.

Details are presented in [10]. In the degenerate case (k2 = 1) we get

ρ1 =
4λ2

γ
b(µ + 2δ − tanh2 u)

ρ2 =
4λ2

γ
(1− b)(µ− tanh2 u),

with µ > 1, 0 < b < 1, and u = 2λξ. They represent shifted-bright
solitons.

Conclusions

A multiple scales analysis for three wave interaction in a multiple mode
optical fiber is performed, assuming that one mode has normal dispersion
and the other two anomalous dispersion. If a long wave-short wave interac-
tion takes place a two component Zakharov-Yajima-Oikawa system results.
This is analyzed using a Madelung fluid ansatz for the short waves. The
resulting system is solved in two cases, namely 1) equal and constant veloc-
ities, and 2) motion with stationary profile current velocities. Expressions
for the bright solitons in these cases are presented.
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