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Abstract

In this talk, we review how the superspace formulation of maximally
supersymmetric field theories (including supergravity) naturally leads
to introduction of pure spinors and pure spinor superfields, and why
the formalism provides off-shell formulations. This approach to pure
spinor superfields thus stresses field-theoretic aspects rather than the
first-quantised ones normally used e.g. in superstring theory. We
discuss how the BRST operator arises and the principles behind con-
structions of actions, as well as the general Batalin–Vilkovisky frame-
work. D = 11 supergravity and its recently constructed supersym-
metric action [1] is taken as an example throughout the talk.This is
the written version of a lecture given at the 6th Mathematical Physics
Meeting, Belgrade, September 2010.

Maximally supersymmetric models1 have fields that come in on-shell su-
permultiplets. The supersymmetry algebra on the component fields close
(together with gauge transformations) only modulo equations of motion.
In a traditional superfield formulation, this is a problem, since it implies
that supersymmetry can not be manifested in an action formulation.
For some time, it has been known that the introduction of pure spinors
can solve this problem. In fact, it is turned into an advantage. Such a
formulation does not contradict any no-go theorems against the existence
of auxiliary fields, since the number of component fields added by the intro-
duction of more bosonic variables is infinite. In this talk, I will review the
quite natural transition from a traditional superspace formulation of a max-
imally supersymmetric model to a formalism with pure spinors, and also
discuss some formal developments. The discussion will, apart from some
final remarks, concern classical field theory, even if one of the eventual goals
will be to examine quantum properties of the models in question, with as
much symmetry as possible manifest. Some aspects will be touched on only
briefly, and in case I am not able to convey the method in a convincing way,
more information can be found in the references.

∗ e-mail address: martin.cederwall@chalmers.se
1This means 8 real supersymmetries for scalar multiplets, 16 for vector/tensor multi-

plets and 32 for supergravity multiplets

139



140 Martin Cederwall

There is a close relation between supermultiplets and pure spinors. The
algebra of covariant fermionic derivatives in flat superspace is generically
of the form

{Dα, Dβ} = −Tαβ
cDc = −2γc

αβDc. (1)

If a bosonic spinor λα is pure, i.e., if the vector part (λγaλ) of the spinor
bilinear vanishes, the operator

Q = λαDα (2)

becomes nilpotent, and may be used as a BRST operator. This is, schemat-
ically, the starting point for pure spinor superfields. (The details of course
depend on the actual space-time and the amount of supersymmetry. The
pure spinor constraint may need to be further specified. Eq. (1) may also
contain more terms, due to super-torsion and curvature.) The cohomology
of Q will consist of supermultiplets, which in case of maximal supersymme-
try are on-shell. The idea of manifesting maximal supersymmetry off-shell
by using pure spinor superfields Ψ(x, θ, λ) is to find an action whose equa-
tions of motion is QΨ = 0.
The fact that pure spinors had a rôle to play in maximally supersymmetric
models was recognised early by Nilsson [2] and Howe [3, 15]. Pure spinor
superfields were developed with the purpose of covariant quantisation of
superstrings by Berkovits [4, 7, 20, 10] and the cohomological structure was
independently discovered in supersymmetric field theory and supergravity,
originally in the context of higher-derivative deformations [5, 6, 8, 9, 11,
24, 13, 14]. The present lecture only deals with pure spinors for maximally
supersymmetric field theory.
The canonical example taken to illustrate the mechanisms at play is D = 10
super-Yang–Mills theory. I this lecture, I will take the opportunity to use
a supergravity theory, D = 11 supergravity [21] as the example. In a sense,
this is the only model that fits our requirements. If we look for a maximal
supergravity, the choice is between this model, and type IIB supergravity
in D = 10, or their dimensional reductions. Type IIB contains a self-dual
tensor field, which prevents a Lagrangian formulation. So, the choice is
D = 11 supergravity; there is no “toy model”. The situation is a bit more
technically complicated than for D = 10 SYM, but I hope you will bear
with this. The structure turns out to be very rewarding.
The component fields of D = 11 supergravity are

metric gmn (bosonic)
3-form Cmnp (bosonic)
gravitino ψα

m (fermionic)

The component action takes the form

S =
1

2κ2

∫
d11x

√−g

(
R− 1

48
HmnpqHmnpq

)

+
1

12κ2

∫
C ∧H ∧H + terms with fermions, (3)
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where H = dC is the 4-form field strength.
The superspace formulation of D = 11 supergravity is well known [22]. It
follows the standard procedure for supergravity in superspace. The coor-
dinates xm are complemented by fermionic coordinates θµ, and we write
ZM = (xm, θµ). The vielbein (frame) 1-form is extended to a 1-form on
superspace with a flat tangent index:

EA = dZMEA
M , (4)

A = (a, α) being the flat index. The spin connection 1-form ΩA
B is Lorentz

valued. One also defines torsion and curvature 2-forms

TA = DEA = dEA + EB ∧ ΩB
A , RA

B = dΩA
B + ΩA

C ∧ ΩC
B, (5)

which leads to the Bianchi identies

DTA = EB ∧RB
A , DRA

B = 0. (6)

In Einstein (bosonic) gravity, torsion is set to zero. This does not happen
here, as we will see shortly.
Remember that all components of the vielbein and spin connection are su-
perfields. We have much too many fields. Generically one only needs the
lowest-dimensional superfield, in this case Eµ

α, which has (inverse length)
dimension −1

2 . All other superfields will be related to it, and it will con-
tain all the physical component fields. The method for eliminating other
superfields as independent degrees of freedom is by using conventional con-
straints. They are of two types: those eliminating the spin connection and
those eliminating (part of) the vielbein. I will not describe the transforma-
tions used in order to implement the conventional constraints; a detailed
account can be found in refs. [23, 24]. The transformations are such that
the transformed fields satisfy the Bianchi identities if the original ones do.
Conventional constraint should be implemented at the level of “field strengths”
– in this case on the torsion. Systematically applying the associated trans-
formations, it turns out that the torsion can always be brought to the form

Tαβ
c = 2γc

αβ +
1
2

U c
e1e2γ

e1e2
αβ +

1
5!

V c
e1...e5γ

e1...e5
αβ (7)

↑
standard

The tensor superfields U and V are all that is left in the torsion at di-
mension 0. The Young tableaux indicate the irreducible so(1, 10) modules
with this symmetry, which in Dynkin notation will be labelled (11000) and
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(10002), respectively. Sofar, the fields remain off-shell. It is known that
demanding U = V = 0, i.e., taking the torsion at dimension 0 to have the
“standard” form of eq. (1), implies the equations of motion. Demanding
U = V = 0 is a physical constraint, as opposed to a conventional one.
There is no guarantee that such a constraint does not interfere with the
Bianchi identities, these being integrability conditions on the torsion. In-
deed one finds, by systematically solving the torsion Bianchi identity, that
the equations of motion are forced on the component fields.
All physical fields are, as mentioned, contained in the supergeometry. For
example, the 4-form field strength is found at dimension 1 as

Taβ
γ ∝ Hae1e2e3(γ

e1e2e3)β
γ − 1

8
He1e2e3e4(γae1e2e3e4)β

γ . (8)

See e.g. ref. [24] for details. Of course, the vielbein can contain the 3-form
C, which is not gauge invariant, only through its field strength.
There is also a closed superspace 4-form, which contains the bosonic, phys-
ical, one. The construction of the super-4-form relies on supergeometric
data (the torsion), so this is not an independent construction. However,
Cαβγ contains the entire linearised supermultiplet, and the linearised equa-
tions of motion are obtained by demanding that the irreducible modules

⊕ ⊕

in Hαβγδ vanish (the rest are conventional constraints).
We note that the interesting modules both in T and H are ones containing
columns with 2 and 5 boxes. This is of course no coincidence. They come
from pairs of fermionic indices on the components in fermionic directions
of superspace forms: Tαβ

a and Hαβγδ. Fermionic form indices are sym-
metrised, and the symmetric product of two spinors in D = 11 contains a
1-form (vector), a 2-form and a 5-form. Roughly speaking, the vector part
goes away by the conventional constraints, and the rest remains.

Eα
a : a α or Cαβγ : α ⊕ α

↓ ↓

Tαβ
a : a ⊕

a

Hαβγδ : ⊕ ⊕

(9)
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To summarise, the physical fields and equations of motion reside in super-
fields
In order to use this information to extract a supersymmetric action princi-
ple, one needs an action containing the upper superfields, whose equations
of motion contain the lower ones. The operation of going from fields to
equations of motion looks like an exterior derivative in a fermionic direc-
tion. It indeed is, but in addition a projection has been performed, where
1-form parts have been projected away. This will be the rôle of the pure
spinor.
Remember that a pure spinor λ is defined by

(λγaλ) = 0, (10)

so that the non-vanishing bilinears in λ are (λγabλ) and (λγabcdeλ). (The
precise statement is particular to D = 11. In D = 10, the remaining
bilinear is a self-dual 5-form, (λγabcdeλ).) Now, let us replace the fermionic
frame form Eα by λα. For a p-form ω pointing in the fermionic directions
this simply means replacing

ω =
1
p!

Eα1 ∧ . . . ∧ Eαpωαp...α1 (11)

by 1
p!λ

αp . . . λα1ωα1...αp . In ordinary superspace, taking an exterior deriva-
tive means mixing components with bosonic indices into the result, due to
the presence of torsion:

(dω)α1...αp+1 = (p + 1)D(α1
ωα2...αp+1) +

(
p + 2

2

)
T(α1α2]

aω|a|α3...αp+1), (12)

where Tαβ
a = 2γa

αβ . It is not consistent to treat the fermionic directions
only. However, the second term is projected away by the pure spinor con-
straint. So, the projection on certain modules performed by replacing the
vielbein by the pure spinor allows for a consistent treatment of the compo-
nents along fermionic directions alone.
In this vein, a pure spinor superfield Ψ(x, θ, λ), with an expansion

Ψ(x, θ, λ) = ψ(x, θ) + λαψα(x, θ) +
1
2
λαλβψαβ(x, θ) + . . . (13)

provides a way of dealing with fermionic forms (of arbitrary degree) in
a consistent manner. We will now make the correspondence between the
supergravity vielbein and 3-form and this procedure more precise.
A scalar field Ψ(x, θ, λ), when expanded in a power series in λ, contains

1→α→




⊕



→




α⊕ α



→




⊕ ⊕



→...

(14)
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We recognise the modules of Cαβγ and of the equations of motion. The
cohomology of Q, as defined in eq. (2) gives the linearised equations of
motion! A completely analogous statement holds for a field Φa and the
linearised supergeometry. In that case Φa enjoys the extra gauge symmetry
Φa ≈ Φa + (λγa%) (which can also be understood using transformations
corresponding to conventional constraints) [8].
This makes it clear how conventional superspace in a natural way leads to
pure spinors. Both the fields and the modules implying the equations of
motion can be interpreted as sitting in a pure spinor superfield (actually,
both come in the same field). This opens for the possibility of going off-
shell for such a field. The linearised equations of motion will be encoded
as QΨ = 0 or QΦa = 0.
Before turning to examining the implications of this, I would like to say
some words about the pure spinor space. The pure spinor constraint only
has solutions for complex λ, and the solution space turns out to be 23-
dimensional. 9 out of the 11 constraints on the 32-dimensional spinor are
independent.
There is a special 16-dimensional subspace of the pure spinor cône where not
only (λγaλ), but also (λγabλ) vanishes. This is the space of 12-dimensional
pure spinors. Here is a difference from D = 10 where any monomial in λ
consists of one irreducible module. While the only singular point in D = 10
pure spinor space is the tip of the cône, λ = 0, there is a singular subspace
in D = 11. This will be relevant later, when we consider operators on the
pure spinor space.
The pure spinor superfields considered earlier are holomorphic in the com-
plex variables λα. This (and other issues) raises the question of how integra-
tion with respect to λ should be performed. By looking at the cohomology
of the BRST operator Q, we will get a hint. We have already seen that
the cohomology (at λ3 in the scalar field Ψ, corresponding to the superfield
Cαβγ , and at λ in Φa, corresponding to the linearised field Eµ

a) contains the
physical fields. There is clearly a gauge invariance, e.g. δΨ = QΛ. A careful
examination shows that there is a cohomology in Ψ at λ2 containing gauge
transformations (not only tensor gauge transformations, but also diffeo-
morphisms and local supersymmetry). But since λ has “wrong” statistics,
this cohomology in Ψ will have opposite statistics compared to gauge pa-
rameters. These are ghost fields. Indeed, it turns out that the cohomology
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encodes also the reducibility of the tensor gauge transformations/ghosts,
all the way down to the scalar ghost-for-ghost-for-ghost, which sits as the
λ- and θ-independent part of Ψ. Corresponding statements are true of Φa,
but the gauge transformations encoded are only diffeomorphisms and local
supersymmetry.
Let us for a moment specialise on the zero-mode cohomology, i.e., the co-
homology of an x-independent field Ψ(θ, λ). Why? We have argued that
QΨ = 0 is the condition that enforces the equations of motion, which are
some differential equations with respect to x. For zero-modes, they are
automatically satisfied, and the cohomology problem turns into a purely
algebraic problem. It can be solved by hand, or with computer assistance.
A little thinking also tells us that if there are equations of motion imposed
by cohomology on the fields at λp, these must be represented in the zero-
mode cohomology at λp+1. In addition to the zero-mode cohomology giving
physical fields and ghosts, there is in the cohomology of Ψ a complete “mir-
ror” of fields, where the same (more generically, conjugate, but all so(11)
modules are self-conjugate) modules occur at λp and λ7−p. The cohomol-
ogy at λ4 has the right properties to represent field equations or currents
(as we have already argued earlier). The “wrong” statistics again forces an
interpretation on us: they are antifields, in the Batalin–Vilkovisky (BV)
[25] sense. All fields and ghosts and their respective antifields naturally
occur as cohomology. A complete table of the zero-mode cohomology in Ψ
is given below. The modules are given with their Dynkin label.
In the table, ghost numbers and dimensions have been assigned by demand-
ing that those of the physical fields are correct. I would like to point at
the “highest” cohomology, corresponding to the antifield for the ghost-for-
ghost-for-ghost. This component of Ψ, itself a field with dimension −3 and
ghost number 3, has dimension 5 and ghost number −4. Suppose we try
to define integration as a kind of residue, by taking the component of an
integrand in this cohomology. Such an integration would have dimension
−8 and ghost number −7. Consider a linearised action of the type

κ2S0 ∼
∫

ΨQΨ. (15)

Together with integration over theta, the total dimension and ghost number
of the component Lagrangian would be

dim(κ2L0) = 2× (−3)− 8 +
1
2
× 32 = 2,

gh#(κ2L0) = 2× 3 + 1− 7 = 0. (16)

This matches perfectly for a component Lagrangian.
One may therefore think that this solves the problem of finding a linearised
action for the pure spinor superfield Ψ, whose equation of motion is QΨ = 0
and reproduces the linearised supergravity multiplet, at least around flat
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space. This is not yet the case, but it is a big step on the way. The re-
maining problem lies in the observation that the integration is singular.
A “residue” does not provide a non-singular measure when the power ex-
pansion is limited from one side. It is a bit like trying to define a residue
for polynomials. This difficulty was resolved by the introduction of non-
minimal variables [10]. In addition to λ, one also considers the pure spinor
λ̄ and a fermionic spinor rα which is pure relative to λ̄, (λ̄γar) = 0. The
BRST operator is changed into

Q = λαDα + rα
∂

∂λ̄α
. (17)

This does not affect the cohomology. I will not go further into details about
non-minimal variables and integration in this lecture.
I would now like to discuss the question of interactions. But first, a few
words on the two fields, Ψ and Φa. Each of them is capable of completely
describing the linearised supergravity multiplet. An important difference
is that while Ψ contains the “naked” 3-form potential and the associated
ghosts, Φa does not. It only contains the 3-form through its 4-form field
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strength H = dC. A further observation is that the cohomology of Φa (not
presented in detail above), although having a kind of “mirror symmetry”,
does not show a symmetry between fields and antifields. When one goes
beyond equations of motion, the cohomology looks “too big”. Neither does
this cohomology possess a singlet that can be related to a measure.
Since the component action contains a Chern–Simons term ∼ C ∧ H ∧
H, it can never be constructed from Φa alone. We must think of Ψ as
the fundamental field and Φa as a derived field. It therefore seems likely
that there is some operator Ra, such that Φa = RaΨ. Since cohomology
should map to cohomology, Ra itself should commute with Q (modulo gauge
transformation δΦa = (λγa%). It is indeed possible to construct such an
operator, with the correct quantum numbers. Here, I will not give the full
form.

Ra = η−1(λ̄γabλ̄)∂b + . . . , (18)
where the ellipsis denotes terms with r. η is the invariant vanishing on
the 16-dimensional subspace of 12-dimensional pure spinors. This is again
a difference from D = 10, where operators with negative ghost number
typically diverge only at λ = 0. The operator Ra turns out to provide key
input for the construction of interaction terms.
It turns out to be very fruitful to play with the fields Ψ and Φa, and ask
for possible 3-point couplings matching the counting of dimension an ghost
number (no dimensionful constants should be included, unless one looks
for higher-derivative interactions [24]). The extra gauge invariance for Φa

can be taken care of by demanding that it always sits in a combination
(λγabλ)Φb. Then the Fierz identity (λγabλ)(γbλ)α = 0, holding for a pure
spinor, assures gauge invariance. Such a factor can also help to contract
the vector indices on two (fermionic) Φ’s. Simple counting shows that the
combination

S1 ∼
∫

Ψ(λγabλ)ΦaΦb =
∫

(λγabλ)ΨRaΨRbΨ (19)

is the only gauge invariant combination of Ψ’s and Φ’s, without extra op-
erators, that has the correct dimension and ghost number.
Could this be a good 3-point coupling? What are the principles in deciding
which interaction terms are allowed? In order to answer these questions,
we need to talk a little more about the BV formalism2. A good review,
departing from classical field theory, is provided in ref. [26].
The BV formalism, in general, builds on a “doubling” of all fields, physical
ones as well as ghosts, with their corresponding antifields, of opposite statis-
tics. A fundamental structure, similar to a Poisson bracket, is provided by
the antibracket, which in a component formalism is defined as

(A,B) =
∫

[dx]
(

A
←
δ

δφA(x)

→
δ

δφ?
A(x)

B −A
←
δ

δφ?
A(x)

→
δ

δφA(x)
B

)
. (20)

2In principle, one analyse interactions in terms of gauge invariance. But since both
the action and the gauge transformations may get modifications, the BV framework turns
out to be much more efficient, in that it deals with both issues at once.
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Here, φA denote fields (including ghosts) and φ?
A antifields. The action itself

is the generator of “gauge transformations”, generated as δX = (S,X),
where (·, ·) is the antibracket. The governing equation generalising Q2 = 0
is the BV master equation [25]

(S, S) = 0, (21)

and this is the only consistency check needed when introducing interactions.
BRST cohomology is an inherently linear concept, and the BV formalism
is the appropriate way to generalise it to non-linear (interacting) theories.
Since we already know the the BRST cohomology of a pure spinor super-
fields provides both fields and antifields, there is no choice but to follow
the BV procedure. The difference from a component formulation is that
we are dealing with a single field Ψ, encoding all fields and antifields. For
the pure spinor superfield Ψ, the antibracket takes the simple form [1]

(A,B) =
∫

A
←
δ

δΨ(Z)
[dZ]

→
δ

δΨ(Z)
B, (22)

which I interpret as another sign that we are on the right track (the integral
here is over all variables).
The full BV action for D = 10 super-Yang–Mills (and its dimensional
reductions) is the Chern–Simons-like action

S =
∫

[dZ]Tr
(

1
2
ΨQΨ +

1
3
Ψ3

)
(23)

(implicit in refs. [7, 10, 5]). Note that there is only a 3-point coupling; the
quartic interaction arises on elimination of “auxiliary fields”, notably the
lowest component in the superfield Aα(x, θ).
An analogous formulation exists for the Bagger–Lambert–Gustavsson and
Aharony–Bergman–Jafferis–Maldacena models in D = 3. The simplifica-
tion there is even more radical: The component actions contain 6-point
couplings, but the pure spinor superfield actions only have minimal cou-
pling (i.e., 3-point interactions) [17, 18].
But I would like to turn back to supergravity. The fact that the operator
Ra commutes with Q (modulo gauge transformations) ensures that the
interaction term proposed above

S1 ∝
∫

[dZ](λγabλ)ΨRaΨRbΨ (24)

is a nontrivial deformation respecting the master equation. The factor
(λγabλ)

• ensures that dimension and ghost number are correct,
• guarantees the invariance under Φa ≈ Φa + (λγa%),
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• makes possible a contraction of Φa’s.

Some terms have been checked explicitly (Chern–Simons term, coupling of
diffeomorphism ghosts encoding the algebra of vector fields), so it is clear
that this gives the 3-point couplings of D = 11 supergravity.
One may expect that an expansion around flat space would be non-polynomial.
This is however not the case. Checking the master equation to higher order
in the field involves commutators of Ra’s. The Ra’s don’t commute, but
“almost”.

1
2
(λγabλ)[Ra, Rb] =

3
2
{Q, T}, (25)

where T = 8η−3(λ̄γabλ̄)(λ̄r)(rr)(λγabw). The master equation is exactly
satisfied by

S =
∫

[dZ]
[
1
2
ΨQΨ +

1
6
(λγabλ)(1− 3

2
TΨ)ΨRaΨRbΨ

]
. (26)

Note the similarity of the 3-point coupling (∝ ΨΦΦ) to the Chern–Simons
term (which it indeed contains). After a field redefinition Ψ = (1+ 1

2T Ψ̃)Ψ̃:

S =
∫

[dZ]
[
1
2
(1 + T Ψ̃)Ψ̃QΨ̃ +

1
6
(λγabλ)Ψ̃RaΨ̃RbΨ̃

]
. (27)

I would like to stress that this is quite a remarkable property. It seems
that the elimination of auxiliary fields will reintroduce the non-polynomial
property of the component supergravity. There is of course a price for
this simplicity. The geometric picture is lost, when the fields are expanded
around a background (in our case, a flat one). Even if the action is exact
to all orders, it is not clear how to find solutions that correspond to exact
solutions in gravity or supergravity.
A few words on gauge fixing. In the BV formalism, it amount to ordi-
nary gauge fixing of the physical fields, as well as elimination of antifields.
Covariant gauge fixing (Siegel gauge) amounts to demanding

bΨ = 0,

where b is the composite b-ghost, satisfying [Q, b] = ¤. The propagator
then becomes b¤−1. Unlike in component BV formalism, there is no need
to introduce non-minimal fields (antighost, Nakanishi–Lautrup field); they
are contained in Ψ (implicit in ref. [27]). The D = 11 b-ghost has been
constructed [28], and takes the form

b =
1
2
η−1(λ̄γabλ̄)(λγabγiD)∂i + . . .

Some conclusions and problems:
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• The framework described resolves the issue of classical supersymmetric
actions for maximally supersymmetric theories.

• The interaction terms are generically much simpler and of lower order
than in a component language; for supergravity to the extent that the
action becomes polynomial.

• Presumably, the formalism may be efficient for calculating quantum
amplitudes. Need to establish connection to “superparticle” prescrip-
tion. Finiteness of BLG? Of N = 8 supergravity? Regularisation is
needed in path integrals, due to negative powers of η.

• How is U-duality realised? Models connected to generalised geome-
try, with enlarged structure groups, may possibly provide generalised
models of gravity?

• Geometry? Background invariance? The polynomial property should
be better understood.
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